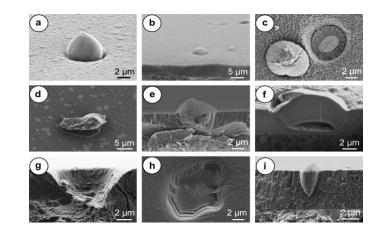


DESIGN FOR TEST DFX TECHNIQUES

Why doing DFT?


Test is not the reproduction of verification

Verification need to target design specifications

Test should **cover** faults (**fabrication defects**) using direct or indirect methods and faults models

To guarantee

Economically **viable business**Fast and **effective production** conditions
Handling of increased complexity (SoC, SiP)

DEFINITION

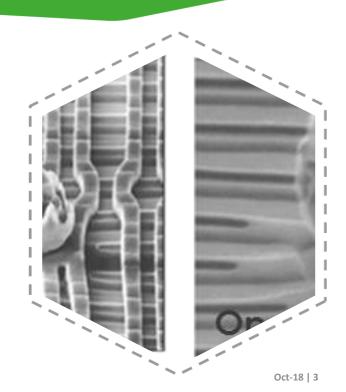
Fault – fabrication defect

Definition

A fault is present in the system when there is a **physical difference between the "good"** or "correct" system **and the current system**

Modeling

Geometric: define layout rules (FAB)


Switch-Level (transistor): **short, open**

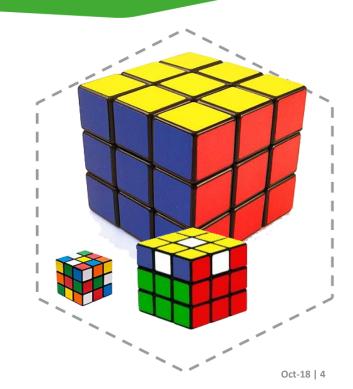
Structural: stuck-at 1, stuck at 0

Delay: affect propagation delays

Functional: at speed test (RAMs, ROMs)

DEFINITION

Impact of late detection


Late default detection can be huge 10x more for each step or even more ...

Cost of delay

Company image loss

Missing window of opportunity

Delayed time to cash (TT\$)

DEFINITION

2 sides of same coin

DESIGN

Function

- IP blocks

JTAG

- Debug and trace

PINs/PADs out

Event triggered

- Interface (bus)
- Communication

TEST

Defects detection

- Fault models

JTAG

- Access mechanism

PINs/PADs out

- Access mechanism
- Test rail

Cycle based

What does DfT stands for?

Design for Test/Testability

IC supply chain expert

Design for Troubles

Designers view?

Manager view?

... Don't forget Test!

MUCH MORE THAN ASIC TEST Oct-18 | 6

Common Test Interfaces

```
JTAG (TAP)

IEEE 1149.x standard, dedicated to test/debug

SPI

Industry standard (Motorola)

I2C

Industry standard (Philips/NXP)

Direct access
```

Dedicated (ad-hoc) configuration

Commonly used blocks

```
ADC/DAC
```

Analog to Digital interfaces

RAM/ROMs

Memories

OSC / PLL

External / internal clocking

Digital cores

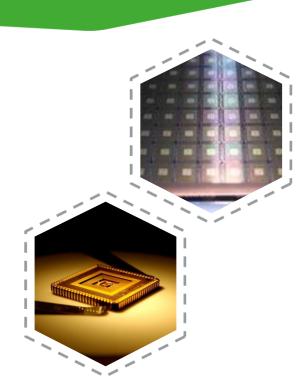
Dedicated function

Test methods and existing concepts

Functional

Widely used but mostly inefficient

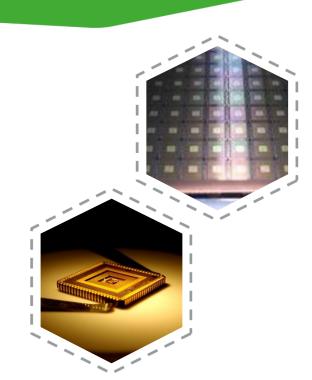
Structural


Scan

BIST

Idd(Q)

Analog BUS (IEEE1149.4)


DfT methods I (ad-hoc)

Initialization facilities

Test point insertion

Partitioning

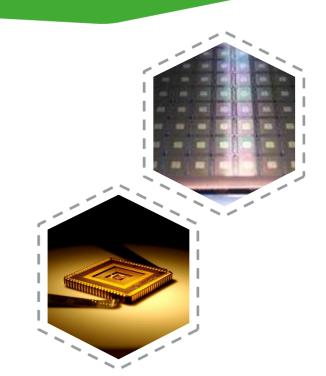
Access / multiplexing

DfT methods II (structured)

Scan

Full scan

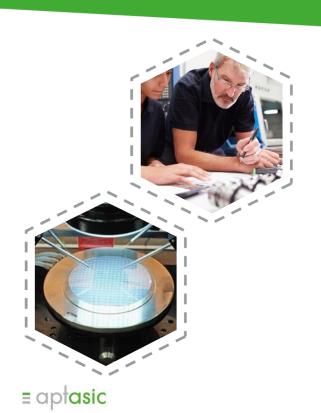
Boundary scan


IDDq

Quiescient current

BIST

Memories


In situ test (e.g. PLL)

CONCLUSION

DfT summary

Target: reduce test cost of complex ICs

Shorten test development time

Facilitate testing at system level

Improve product quality

Need: ICs that are easy to test

Increase accessibility / observability

Ensure **predictable** ICs responses

Trade-offs

Technical: area, I/O pin, performance

Economic: design time, yield, time to revenue

MUCH MORE THAN ASIC TEST

DfT starts with a KISS

Keep it simple and smart

The best practices are the simplest ones

Not with long list of to do's

Rather better a short list of don't do

Or short list of **best practices**

Consider DfT very early in the design process

Testability should be part of your SPECs

THANKS FOR YOUR ATTENTION

