ATE AND PROBERS dedicated to CMOS imager probing

LTXC D10 ATE mixed signal
D10 configuration: (2x) DPIN96, VIS16, DPS, MultiWave, DIBU

EG4090 Prober
8 inches prober (Dark & clean set-up)

Ex3000 Accretec prober
12 inches prober (Dark light and clean set-up)
From “standard” to custom solutions

Test Solution = HW + SW specific development

Standard HW development by Aptasic:
Standard Load-Board 84 signals

SW developed by Aptasic:
High level language code (C/C++)

Low investment - short lead time for first tested Silicon
MUCH MORE THAN ASIC TEST
84 pin HW ProbeCard
Compatible with former concept
Used for wafer probing
- One needle to contact each pad or solder bump (WLCSP)
Spider with cantilever or vertical needles to ensure precise position of each needle
Fixed on the main Load-Board
Project specific
HARDWARE CONCEPT

From “standard” to custom solutions

84 pin HW DUT-board

Compatible with Loadboard concept
Used for manual test

ZIF socket soldered on it to ensures contact with DUT
Flat cable connectors

Fixed on the main LoadBoard
Dedicated Handler Board
Automatic DUT contact block

PCB contains the footprint for the test socket

Interfaces with the handler robot

Precise position on the handler
Project specific
CMOS IMAGERS TEST CONCEPT

- Layout
- Test flow
 - Structural tests
 - Functional tests
 - Performance tests
- HW interfaces
 - Load-board (Test Adapter Interface for imagers)
 - Probe-Card (wafer test)
 - Light source (variable light flow)
MUCH MORE THAN ASIC TEST
Custom illumination integrated to Loadboard

- Light Source Specifications and calibration
- Intensity and Wavelength Control
- Uniformity (Noise reduction)
- Large spectrum
- Diffuser
Test solution development
CMOS imagers structural / functional test

Test descriptions
1. Signal pad Opens-and-shorts and leakage current tests
2. Basic power draw at hardcoded defaults
3. Serial control register (SPI port) test
4. DACs test
5. Digital control signals test
6. Power shorts on array columns test
7. Test pixels test
8. Power draw vs. IBias DAC settings
9. Functional evaluation
 - Video Amp gain selection and column binning
 - S/H time constant selection
 - Dynamic gain switching
 - Pixel gain selection functionality
 - Row binning
10. Performance evaluation
 - Pixels offset and electronic noise
 - Pixels leakage current
 - Video buffer electronic noise
 - Sensitivity, Saturation levels and saturation artifacts
 - Linearity
 - Video amplifier settling
 - Crosstalk, non-uniformity and other image artifacts over signal range and steps in image

11. Defective pixels, row segments, column segments, rows, columns
 - Test results reporting
 - Default acquisition timing sequence
 - Correlated double sampling
CONCLUSION

Take away

• Structural and performance test on Wafer and package verification
• Hardware concept easy to deploy
• Test flow tailored to your coverage requirement

... up to 12 inches Wafers!
THANKS FOR YOUR ATTENTION